Promoting EO Applications for Disaster Risk Reduction in Asia and the Pacific

Mr. Keran Wang Chief, Space Applications Section Information and Communications Technology and Disaster Risk Reduction Division (IDD) UN ESCAP

Contents

I. Overview of ESCAP

- II. Enables timely access to and use of space-derived products and GIS for effective disaster risk reduction
- III. Effective monitoring and early preparedness for drought helps save lives and livelihoods
- IV. Strengthening capacity to build multi-disciplinary approach, collating and consolidating information system for disaster risk management
- V. Understanding the risk: Region Land Cover Dataset

I Overview of ESCAP

 Made up of 53 Member States and 9 Associate Members;

- Asia-Pacific region is home to 4.1 billion people, or two thirds of the world's population.
- Asia and the Pacific continued to be the region most affected by natural disasters in last decades.
 #CS71

- In 2014, Asia and the Pacific continued to be the region most affected by natural disasters
 - Over half of the world's 226 natural disasters occurred in Asia and the Pacific;
 6,050 lives lost; 80 million people affected; cost \$60 billion

> In 2015, large scale natural disasters brought devastation

Cyclone Pam wrecked havoc in Vanuatu and affected the Pacific; the recent earthquakes devastated Nepal

Sendai Framework for DRR 2015-2030 calls for regional solutions

For sharing policy lessons and good practices; monitoring and early warning systems; sharing scientific knowledge and technology

Regional Multi-hazard Estimated Risk Map (Cyclone, Earthquake, Floods and Landslides)

Many urban risk hot spots in the region...

305 urban agglomerations, 119 are situated along coastlines, large number of cities with high seismic risk

II Enables timely access to and use of spacederived products and GIS for effective disaster risk reduction

- Just in 2015, 150 Near real-time satellite imagery and 35 damage maps have been provided to Vanuatu, Tuvalu, Nepal and Myanmar for effective disaster response and relief;
- Guidelines on rapid assessment of damage and losses (with SAARC);
- SOPs for utilizing space based data during disasters (with ASEAN);

Satellite Image of Vanuatu (part)

potentially damaged zones in Southern efaté island, vanuatu This map illustrates seattle-detected caused by Topical Cyclone Paint areas of potentially damaged coses in a preintimely analysis and has becaused. Unper langer collector by the granus freedowski to MaTAR / UNC Distaut. Unper Norther of Agent of March 2018 and Verorherd, agent for of Port Vill and bettime and potential damage of the Villa and bettime and potential damage.

Pontoon Bay, Weila Bay

Concerning and Social Commissions for Asia and the Pacific

Satellite Image of Nepal (a whole scene)

Satellite: ChinaGF-I Location: Kathmandu, Nepal Date: 2015Apr11

Compared Map (China GF-I Satellite)

China_GF-1 Satellite acquired on 11 April 2015

China_GF-1 Satellite acquired on 27 April 2015

Kathmandu Nepal

(b) After earthquake

Compared Map(ThaiChote Satellite)

ข้อมูลจากดาวเทียม Thaichote บันทึกภาพวันที่ 8 เมษายน 2557 และวันที่ 27 เมษายน 2558 พื้นที่ที่ได้รับผลกระทบจากแผ่นดินไหว เมื่อวันที่ 25 เมษายน 2558 ปริเวณจตุรัสกาฐมาณฑุ ดูบาร์ เมืองกาฐมาณฑุ ประเทศเนปาล

Recent Flood in Myanmar, Pakistan and **Vietnam- in collaboration with UNOSAT**

1st ASEAN meeting

Meeting highlighted the need for coordination by NDMA and complexity of actors and their roles:

UN-ASEAN workshops on SOPs and guidelines

ESCAP, UN-SPIDER and UNOSAT proposed 2 products going forward:

Integrating geospatial products and services In Damage and Loss Assessment (DaLA)/PDNA

A step-by-step guide on conducting rapid damage assessments for some specific sectors -Housing, Infrastructure, Agriculture and future Disaster Risk.

Contribute towards the development of South Asia Recovery Framework by the SAARC.

Targeted to managers or practitioners from government agencies who often participates and supports rapid disaster needs assessment and responsible for post-disaster relief, response, recovery and reconstruct programmes.

It will be used for capacity building training.

Manual Rapid Assessment of Damage and Loss using innovative technology and space applications

It introduces how to capitalize upon the innovative technologies – space applications, geo-spatial databases and crowdsourcing for making disaster assessment faster, evidence-based and monitorable?

III. Effective monitoring and early preparedness for drought helps save lives and livelihoods

- The Regional Drought Mechanism Covers the most drought prone countries in Asia-Pacific region;
- Provides space based data, strengthens capacity/coordination for effective drought monitoring and early warning;
- Helps drought-affected developing countries establish operational monitoring system, through integration of space-derived information and in-season ground data.
- Initially operationalized in pilot countries, with the technical support of two regional service nodes in China and India.
- The Mechanism brings regional resources in space applications, contributed by China, India, Japan, Thailand and others.

Approach and Methodology

3rd week

PRECIPITATION

Disarrangement data

A REAL PROPERTY.		_	_	_		NUMBER	CONTRACTOR OF STREET,	Manager 1	HON!
Here Board	Parlant P	resile Dela	Antipe	100	Table Days				
A *** .		1661		-	Seats .	- 14	N 10	Harry	a), (A
de tran		A-A- 8			Shares a target 1	1 N 1 N 2	Janificant Party	a la sum	al.
Contract of Contract	how.	-		-		Santas 1	Farmenting - as loss		
mille - 1									
							14		- 1
5147104-42					ALLSTATION-42		DAY: 8, 18, 28		
JE: 2808-2001					DATE: 2000-2013				
manual list	Data	Depth-Saml	biology		interest	Duto	Oopth-18 yrs	Mole	
209	4/8/3808	1	31.8		289	4/8/3900	2	12.7	
209	6/38/2000	1	8.8		100	4/18/0000	3	7.7	
209	4/38/2000	1	32.5		289	4/26/2900	2	13.5	
209	5/8/2808	1	5.8		289	5/6/2900	2	32.0	
209	5/38(2808	1	30.8		289	5/18/2900	2	12.6	
209	5/28/2808	1	4.6		289	5/28/2900	2	5.9	
209	8,09/1000	1	4.3		109	6/6/2000	3	4.8	
209	4,8(2000	1	30.8		289	4/6/2900	2	11.0	
209	4080908	1	6.5		289	4(16/2900	2	5.6	
209	4/28/2808	1	35.5		289	4/28/2900	2	15.9	
209	5/8/2008	1	9.3		289	5/6/2000	2	12.0	
2018	1/38/3000	1	33.0		109	1/18/0300	3	36.9	
209	\$/35/2008	1	8.6		289	5/28/2900	2	3.4	
209	6,85(2000	1	6.3		289	6/6/2900	2	5.6	
209	4/8/2/908	1	31.4		289	4/6/2900	2	34.3	
209	4/38/3808	1	6.8		289	4/18/2000	2	7.8	
209	6/28/3000	1	9.3		189	4/28/2008	3	8.0	
209	5,857808	1	3.8		289	5/6/2900	2	10.0	
205	5/35/2008	1	8.0		289	5(16(2900	2	8.5	
209	5/28/2808	1	29.3		289	5080900	2	29.9	
209	6/8/2008	1	3.8		289	6/6/2000	2	8.0	
209	0/38/3003	1	8.5		109	4/18/2004	1	8.0	
	in here in party		100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a hardware			_

	900u	anan	genne		uau	a	W	u	ou	IEI	
1	infor	matio	n								
		mario									
0	A 4 4 1 1 1	10	_	_				11100	CORD BARRIES	PEACON JOR	JUL How
	P 1014 30	at matanet r	VALUE AND A	onov v	64 A008						
1.0	2.04	and the		-	Sec. 1		1.00			51 B	8 an.
12	di fam		1.0.0.0		Colorador I					418 14	
	Frend fair	K. (D)		-	1.0				10.00	nothing if he for	041 BUT
	Claterard	The Part		1.04				Russen			
_		* (2) (4) M#	004.00			_	_				
		c	0		-	0				and share in	
-	ID Matter ID	30um some	Rober carlo	LETTER	Longitude	THE	Month	-	10.10.000	And Million	Bell Billion
- 2	1 076031	Tradition	Tradition	07.1808	201,939	3000		200005		1.65	4.30
4	2 (250)11	Terestrusish	Tereshtrusiah	47.3408	101,900	300		200006	4.46	3.38	10.30
2	5 4750111	Texchryaleh	Turachinusleh	47,5808	201-2005	2000		200062	11.41	18.88	6.90
	4 475033	Typethrough	Type through the	47,3808	101,900	200		10000	41.36	25.50	5.80
T	3 470333	Treatment	Treatmonth	47,2808	21,909	200		200001	4.98		1.10
- 41	4 675081	Teachroaich	Terestroalet	67.3808	201,9086	305	- 10	2008/5	1.00	6.68	12:40
	2 (25044)	Trankrusiek	Tereshnuslah	10.79996	1014-10105	-billing	4	200.000	6.05	3.00	11.40
	0 470331	Tywateryalah	Tyxybryalqh	47,0808	101 2020	200	. 7	100.011	11.41	12,48	18.00
	2 470111	Type (he', splicit)	Type (for update	47,3808	101,9009	300		HOCE IN	41.91	11.30	1.40
	10 676081	Trankruské	Transmusters	127.3808	201.0000	200		200804	6.98	2.68	-
-	14 0703911	Transferratett	Turan Merupahan	107.5808	101-1005	200.0		AREAS.	11.00	10.70	-
-	11 470111	Transfer Jones	Type (the panel)	10,000	101.000	1000		100.000	1.00	10.00	4.90
- 21	14 1720111	Transfer upon	Transfer of the	10,000	101.000	100	-	100.000	1.00	1.0	1.00
10	41 (250444	Territorialet	Transfer salah	47.1444	1014-10100	3000		Joint Brits	-		
-	10 0000111	Tracket	Tura dan salah	47.1878	101.000		-	COLUMN 1	73.00	10.50	11/10
1.0	17 4700111	Type (by pale)	Turn (for used)	47,3808	101,900	3100.3		10080	1.41	8.89	2040
H	18 (75091)	Territorialete	Territogalate	17.1808	101.9004	3003	T	200803	11.01	18.79	10:00
11	10 1210101	Tereshevalah	Terenheuselah	42.3468	1014/06000	300	4	201818	41.04	27.68	26162
	X 470031	Treatmodel	Truchtrusieh	42,005	101.9005	200.0	- 9	200805	18.94	6.38	1.00
.11	11 470111	Tyre through the	Tyre through t	47,3808	101,9004	2004	3	10040	3.48	3.58	0.30
.8.	12 (1963)	Tradel	Tradition	07,1808	21.939	201		200404	3.00	5.00	2040
24	28 (290241	Tourshrusish	Turanteruslah	42.1996	201-9036	3004	T	200467	18.80	8.28	18.80
	28 4750211	Tyxohrusieh	Tyrachtrusiet	47.5808	201-2005	2004		200408	6.36	33.88	2540
17	D 42011	Transfer upon	Tyre the upbet	47,3808	No. Autor	2014		rooters	1.0	4.00	0.00
1.0	20197000	Transmission	Torn Philadelli	1000	No. Plan		-	and the second	1.1	2.98	1.8
-	ar schools	Transfer sales	Transferration	1011000	10.0.000	-			10.00	4.10	11/00
÷.	0 00000	Toronto used	Turandan salah	107.1070	101.000	-	-		12.00	1.01	15.00
1.0	10 470011	Total Distantia	Transfer of the	ALC 1908	101.000	100		and some	1.40	1.95	0.30
				- 1 -	Sec. 5.			41.	-		
			Da	ага	Into	DE	ma	ILC	n		

Two experts from Mongolia have been trained in China for two months to develop and assess indices appropriate for Mongolia, one filed mission has been conducted, field mission to verify the customized drought indices and methodology.

Finally arrangement data record is totally 23

Specialized training on drought monitoring for country team in Sri Lanka, in February 2015.

Drought Monitoring System and Drought Watch system developed by India and China have been installed for the users in Sri Lanka.

SCAP

IV Strengthening capacity to build multi-disciplinary approach, collating and consolidating information system for disaster risk management

- Special focus on high-risk and low capacity developing countries. Over 400 experts, and government officials from 31 countries trained in 2014.
- Focus areas
- Mainstreaming space applications into disaster risk management.
- Use of space and GIS in flood-risk mapping, drought monitoring and early warning.
- Facilitate the establishment and use of the geo-referenced information system for DRR (Geo-DRM) in CSNs.
- Technical advisory service in effective use of space and GIS for DRR.
- Needs identified through Surveys and Regional Inventory on capacity of space applications

 RESAP Training and Education Networks – China, India (CSSTEAP – Pehradun), Indonesia and ESCAP – APCICT (Republic of Korea)

Evidence based decision making-Geo-referenced information system for disaster risk management (Geo-DRM)

ESCAP facilitated Bangladesh, Cook Islands, Fiji, Kyrgyzstan, Mongolia an Nepal establishing the Geo-DRM portal

Technical assistance on Geo-DRM in Bhutan, June 2015

Technical assistance to Bhutan

Participants from Department of Disaster Management (DDM), Ministry of Home & Cultural Affairs (MoHCA) and Department of Hydro Met Services, Ministry of Economic Affairs (MoEA) have been trained and the Geo-DRM portal have been established.

Technical assistance on establishing Geo-DRM portal at Center of Minister of Emergency Situation in Bishkek and Osh, Kyrgyzstan, in May 2015

Economic and Social Commission for Asia and the Pacific

Technical assistance on establishing Geo-DRM portal at National Emergency Management Agency, Mongolia, in April 2015

NEW ESCAP's DRM E-Learning Platform

UNITED N ESC Economic and Social Commission for	ATIONS Disaster Risk Management E-Learning Platform	UsernameA Password	>
Welcome		Search website	٩

INTRO TO RS&GIS USING QGIS

Course for those new to GIS and remote sensing and who want to use GPS in their work.

PRESS TO ENTER

2.

FLOOD MODELLING

A brief introduction on the use of HEC- GeoRAS 10.1 with ArcGIS 10.1 and HEC- RAS 4.1.0

PRESS TO ENTER

CONFIGURING GEODRM

Course on installing, configuring and population data on GeoNode and GeoNetwork.

PRESS TO ENTER

QGIS FOR DISASTER MGMT

A QGIS tutorial with a focus on natural disaster mitigation, management and rehabilitation.

PRESS TO ENTER

Launch and Future Plans

• End of June 2015 - - Initial focus now is Geo-DRM, but plans are underway to:

I. Support existing and new space and GIS applications programmes

Elements:

Geo-DRM Portal Development within countries etc.

Regional Drought Mechanism-Drought watch and Drought Monitoring System.

Satellite-derived data for exchange and sharing for disaster response.

2. Establish a DRR compendium

Makeup:

Collection and analysis of regional DRR info and data,

Regional online network of DRR practitioners,

Knowledge sharing network and profiling regional cooperation mechanisms.

3. Incorporate the Asia-Pacific Gateway for DRR and Development

Objective:

Serve as an online "one-stop shop" or "toolbox"

Promote the mainstreaming of DRR policies and sustainable development.

Implementation of Sendai Framework 2015-2030: mandate to ESCAP

Sendai Framework

- 1. Understanding disaster risk;
- 2. Strengthening disaster risk governance to manage disaster risk;
- 3. Investing in disaster risk reduction for resilience;
- 4. Enhancing disaster preparedness for effective response, and to "Build Back Better" in recovery, rehabilitation and reconstruction.

Mandates given by member States on space and GIS applications for disaster risk reduction

Resolution 69/11: Implementation of the Asia-Pacific Plan of Action for Applications of Space Technology and Geographic Information Systems for Disaster Risk Reduction and Sustainable Development, 2012-2017.

- 1. Include space and GIS applications in national policies, regulation and implementation plans;
- 2. Strengthen mutual understanding ,coordination and institutional infrastructure across relevant government agencies;
- 3. Systematize and promote National spatial data infrastructure, data policies and data-sharing arrangements; Spatial and GIS products and services should be shared and made available at all levels;
- 4. Prioritize and support capacity-building and the creation of professionals;
- 5. Enhance the collaboration with UN agencies, international organizations such as UNITAR/UNOSAT, UN-GGIM, UN-SPIDER, GEO, WMO, regional organizations as well as private sectors.

Implementation of Sendai Framework 2015-2030: mandate to ESCAP

Res. 71/12: Strengthening regional mechanisms for the implementation of the Sendai Framework 2015-2030

Invites member States:

to attach priority to promoting ICT and space applications for effective disaster risk management.

Request the secretariat:

- 1. Lead the implementation of Sendai Framework at regional level;
- 2. Strengthen disaster risk modelling, assessment, mapping, monitoring and multi-hazard early warning systems;
- 3. Enhance the technical assistance to the developing countries, in particular for Pacific, in applications of space technology and GIS;
- 4. Strengthen regional cooperative mechanisms and collaboration with other UN agencies and international/regional organizations;

V. Understanding the risk and building resilience: Regional Land Cover Dataset

- Focus on baseline data on land use which is critical to disaster risk reduction, monitor climate change and implementation of post-2015 sustainable development goals.
- Develop the customized methodology and tools:
 -Free open source software and commercial software;
 -Joint efforts with UNITAR/UNOSAT and experts from member countries;
 - -Tested and verified by pilot countries.
- Select pilot countries in Asia and the Pacific;
 Need survey and select thematic areas in the pilot countries;
 Verification with local data;
 Work with country team.

Enhance the capacity on developing national dataset, customized pools and products to assess the risk, monitor the changes and building resilience. Conduct thematic projects, including urbanization, disaster management, agriculture, forestry, coast hazard, environment, etc. for the country to monitor the implementation of post-2015 SDGs and Sendai Framework 2015-2030.

Update the regional land cover may every five years until 2030.

In collaboration with NASG, UN-GGIM, UNOSAT, GEO, related UN agencies, regional organizations and private sectors.

Land Cover Types

Regional Baseline Dataset

RLC is the baseline data for multi-sectors
 e.g. analyze the urbanization, land degradation, deforestation

Monitor change matters

5

0

2000

2010

The build up area of Asia(2000-2010)

unit: 10,000 Km²

Middle Asia

West Asia

2020

Pilot Countries

- Bangladesh
- Bhutan
- Cambodia
- Myanmar
- Kazakhstan
- Kyrghyzstan

Methodology

- Satellite image resources: Landsat 8
- Resolution: 30 meter
- Classification method

Supervised classification & Google Earth based modification

Bangladesh

Image date: 2014 Mar 30

Landcover Change of Dhaka City from 2000 - 2014

Example: Shrinking buffer (water) in Dhaka, Bangladesh

Buffer area in 1999

Buffer area in 2014

Urbanization of Dhaka

Thimphu City(Bhutan)

Image date: 2014 Dec 18

Land cover Change of Phnom Penh, Cambodia from 2001 - 2014

Urbanization of Phnom Penh, Cambodia

Water bodies Artificial surfaces

Area: 126,000 km² Image date: 2014 Nov 29

Compare RLC30_2015 with GLC30_2010 (Myanmar)

Sample region (Myanmar)

Image Source: Landsat 8 (2014 Nov 29)

RLC30_2015 result

Area: 3, 450 km²

Location : Mandalay (716 km north of Yangon on the east bank of the Irrawaddy River)

Sample region (Myanmar)

GLC30_2010 result

RLC30_2015 result (2014 Nov 29)

Area: 3, 450 km²

Location : Mandalay (716 km north of Yangon on the east bank of the Irrawaddy River)

Kazakhstan & Kyrghyzstan

Area: 66,563 km² Image date: 2014 Sep 1st

Compare RLC30_2015 with GLC30_2010(Kyrghyzstan&Kazakhsta n) GLC30_2010 result RLC30_2015 result (2014 Sep 1st)

Area: 66,563 km²

Compare RLC30_2015 with GLC30_2010 (Kyrghyzstan&Kazakhstan)

Image source: Landsat 8

(2014 Sep 1st)

RLC30_2015 result

Water bodies Wetland Artificial surfaces

Area: 3,956 km² Location : Alma-Ata (The city region located at the south of Alma-Ata)

Compare RLC30_2015 with GLC30_2010 (Kyrghyzstan&Kazakhstan)

GLC30_2010 result

RLC30_2015 result (2014 Sep 1st)

Water bodies Wetland Artificial surfaces

Area: 3,956 km² Location : Alma-Ata (The city region located at the south of Alma-Ata)

Thank you

Keep up to date at unescap.org/commission